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Analysis of optimal velocity model with explicit delay
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We analyze the optimal velocity model~OVM! with explicit delay. The properties of congestion and the
delay time of car motion are investigated by analytical and numerical methods. It is shown that the small
explicit delay time has almost no effects. In the case of the large explicit delay time, a new phase of congestion
pattern of OVM seems to appear.@S1063-651X~98!12410-8#
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I. INTRODUCTION

In recent years, we proposed a car-following model cal
the ‘‘optimal velocity model’’~OVM!, based on a dynamica
equation@1#

ẍn~ t !5a$V„xn11~ t !2xn~ t !…2 ẋn~ t !%, ~1.1!

wheret is time andxn is a position of thenth car. Cars are
numbered so that the (n11)th car precedes thenth car. The
driver feels the headwayxn11(t)2xn(t) and determines an
optimal velocityV„xn11(t)2xn(t)…. It is best to drive a car
with the optimal velocity but in general a deviation exis
between the optimal velocity and a real one. The driver
sponds to the deviationDV5V„xn11(t)2xn(t)…2 ẋn(t) and
diminishes it by giving an accelerationaDV to the car. The
coefficienta expresses the sensitivity of the driver. We c
the functionV the ‘‘optimal velocity function’’ ~OVF!. In
previous papers, we have shown how the OVM can exp
behaviors of traffic flow, for example, the transition from
free flow to a congested flow, a density-flow relationship
kind of effective delay of car motion@1–4#.

On the other hand, the prototype equation of motion
traditional car-following model is

ẍn5l0$ẋn112 ẋn%, ~1.2!

where l0 is a constant@5–7#. In this model, a driver is
thought to react to the stimulus proportional to the relat
velocity between the previous car and his own car. Equa
~1.2! may be generalized by changing the constantl0 to a
function l(xn112xn) of headway. However, these mode
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have no physically interesting solution because such eq
tion can be integrated easily and be reduced to the follow
equation:

ẋn5V~xn112xn!, ~1.3!

where V is a function of headway andV8(xn112xn)
5l(xn112xn). In car-following models, therefore, the in
troduction of ‘‘delay’’ is necessary and is essential to und
standing traffic dynamics@8,9#. The following equation is a
typical one that is widely used in car-following models:

ẋn~ t1t!5V„xn11~ t !2xn~ t !…, ~1.4!

wheret is a delay time of the driver’s response. The driv
senses headway at timet and changes the velocity of his ca
at later timet1t. This delay timet of response has bee
thought to be inevitable because it comes from the drive
physical delay of response to the stimulus together with
mechanical response time of a car. In this paper, thist will
be called the ‘‘explicit delay time.’’

The notion of explicit delay timet is completely different
from that of the ‘‘delay time of car motion’’ introduced in
our previous paper@4#. Let us recall the definition of the
delay time of car motion. Consider a pair of cars, a lea
and a follower. Assume the leader changes the velocity
cording tov l5v0(t) and the follower duplicates the leader
velocity but with some delay timeT, that is, v f5v0(t
2T). Under such a situation we can clearly define the de
time of car motion byT. It is known that the observed dela
time T of car motion is of the order of 1 sec, but the know
physical or mechanical response timet is of the order of 0.1
sec. In the previous paper we confirmed that the Eq.~1.1!
really producesT of order 1 sec.

We clarified that the OVM can describe the properties
traffic flows or the behaviors of cars fairly well without an
explicit delay timet. However, there exists, for a fact, th
delay time of the response of the driver. The explicit de
time t should be included in the dynamical equation in ord
to construct realistic models of traffic flow. It is a natur
5429 © 1998 The American Physical Society
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question what kind of effect appears in the traffic flow or
the car motion if we introduce the explicit delay in Eq.~1.1!.

In this paper we investigate the following equation:

ẍn~ t1t!5a$V„xn11~ t !2xn~ t !…2 ẋn~ t !%. ~1.5!

In order for our analysis be more concrete, we use the
rametera52.0 ~1/sec! and the functionV which are phenom-
enologically determined in previous papers by the obser
data on Japanese motorways@10–12#.

V~Dx!516.8@ tanh 0.0860~Dx225!10.913#, ~1.6!

in which the unit of length and time are meter and seco
respectively.

The plan of this paper is as follows. In Sec. II we discu
the global properties of traffic flow in the OVM with th
explicit delay. In Sec. III we investigate more microscop
property, that is, the delay time of car motion. First we d
cuss within a linear approximation and next evaluate the
lay times of car motion in various cases by numerical sim
lations. As a special case, the car motion under the tra
signal is also treated. In Sec. IV we show the new feature
the OVM with the explicit delay. The final section is devote
to summary and discussion.

II. PROPERTY OF TRAFFIC FLOW IN OVM
WITH EXPLICIT DELAY

A. Linear analysis

In this section we investigate the OVM with the explic
delay timet of the driver’s response described by Eq.~1.5!.

First we analyze the linear stability of anN-car system on
a circular lane of lengthL. Obviously, the homogeneou
flow solution of Eq.~1.5! is given by

xn
~0!~ t !5V~b!t1nb, b5L/N. ~2.1!

To see whether the solution~2.1! is stable or not, we add a
small perturbation

xn~ t !5xn
~0!~ t !1yn~ t !. ~2.2!

From Eq.~2.2! and Eq.~1.5!, we can calculate a linearize
equation with respect toyn(t)

ÿn~ t1t!5a$ f Dyn~ t !2 ẏn~ t !%, ~2.3!

wheref 5V8(b) andDyn5yn112yn . A complete set of so-
lutions is given by

yjn~ t !5exp~ ia jn1 iv j t !, ~2.4!

where a j52p j /N for j 51,2,3,... ,N and v j satisfies the
equation

2S v j

a D 2

expF i S v j

a DatG5S f

aD $eia j21%2 i S v j

a D . ~2.5!

In Eq. ~2.5!, variables are combined to be dimensionless. T
condition that each solutionyjn(t) becomes marginally
stable is Imv j50. For convenience of explanation, we w
omit the mode indexj and treata as a continuous variable
a-
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,
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The condition Imv50 gives ‘‘critical curves’’ for eachat
in ( f /a,a) plane, wheref /a is a radial coordinate anda is
an angular coordinate. Mode solutionsyjn(t) are represented
by a point (f /a,a j ) on a circlef /a5const.

Three critical curves forat50, 0.2, and 0.4 are shown i
Fig. 1, in which a reference circle represents mode soluti
for f /a50.75. The modes staying outside~right-hand side!
of the critical curve are unstable. Figure 1 shows that a
mogeneous flow state with a parameterf /a50.75 is an un-
stable state. From Fig. 1, it is found that unstable mo
increase as the explicit delay timet becomes large. This
situation looks similar to a case where the sensitivitya be-
comes small in the original OVM@1#. There seems to be
some relationship between the sensitivitya and the explicit
delay timet as indicated in Ref.@13#.

B. Numerical simulations

The effect of the explicit delay in the congestion form
tion can be evaluated by numerical simulations. In previo
papers@1,2#, we investigated the property of traffic flows in
circuit. It is found that when the car density exceeds a criti
value, a homogeneous traffic flow becomes unstable
makes a phase transition to a congested flow. After eno
time, the congested flow becomes stationary and show
alternating pattern of high-density~congestion cluster! and
low-density regions. Each velocity and headway inside hi
~low-! density regions always take common values that
determined only by the sensitivitya and OVF independently
of any other conditions. The motion of each car can
shown in a ‘‘phase space’’ (Dx, ẋ), and the trajectories draw
a single ‘‘hysteresis loop,’’ a kind of limit cycle. Figure
shows typical hysteresis loops for sensitivitya52.0 and 2.8.
Numerical simulations are carried out with the conditio
total car numberN5100 and circuit lengthL52500 m@14#.
These hysteresis loops are formed aboutt;1000 sec typi-
cally. As stated above, the results are independent of th
conditions. Two turning pointsC5(Dxc ,vc) and F
5(Dxf ,v f) correspond to the high- and low-density regio
for a52.0 andC8 andF8 for a52.8. We found the conges
tion pattern moves backward on the circuit with a const

FIG. 1. Critical curves in the polar coordinate (f /a,a) plane.
The solid line, dashed line, and dotted line show critical curves
at50, 0.2, and 0.4, respectively. A circle of diamond marks re
resents mode solutions forf /a50.75.
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velocity (v fDxc2vcDxf)/(Dxf2Dxc), which is given by
the intersection ofẋ axis and the line connecting two turnin
points C and F. Therefore the property of such congest
flows is almost decided by two pointsC andF of hysteresis
loop.

From numerical simulations, we recognize no qualitat
difference in the behavior of the traffic flow between t
cases with and without the explicit delay, ift is not so large.
Figure 3 shows hysteresis loops aboutt;5000 sec fort
50, 0.1, and 0.2, that is,at50, 0.2, and 0.4. The changes
hysteresis loops are similar to those for the case that
sensitivitya becomes small in the original OVM@1#. There-
fore it seems that the explicit delay timet, which is not so
large, does not play any essential role in the congestion
mation. In other words, the effect of the explicit delay can
almost compensated by the change of sensitivitya.

Obviously, this is not the case for a very largeat. Figure
4 shows examples forat50.6, 0.8, where critical curves ar
inside the referenced circlef /a50.75. In the original OVM
instability always comes from long-range modes (a;0),
that is, short-range modes (a;p) are always stable. In the

FIG. 2. ‘‘Hysteresis loops’’ fora52.0 anda52.8. Each line
connects two turning points of each hysteresis loop. A tanh-t
curve represents the OVF@Eq. ~1.6!#.

FIG. 3. Hysteresis loops fort50, 0.1, and 0.2. A tanh-type
curve represents the OVF@Eq. ~1.6!#.
e

e
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e

caseat.0.6, however, there exist various cases in which
modes become unstable or short-range modes only bec
unstable. In such cases, the instability starts from all mo
or from short-range modes. It is interesting to see what k
of phenomena emerge in such cases. An example sha
discussed in Sec. IV.

III. DELAY TIME OF CAR MOTION

A. Linear analysis

In this section, we investigate the delay of car motion
order to see the effect of the explicit delay from a mo
microscopic viewpoint. First, we analyze the delay of c
motion with the linear approximation.

Consider a pair of a leader and its follower where t
leader moves with the velocityv(t) and the follower repli-
cates the motion of the leader after the time intervalT, that
is, the follower’s velocity is given byv(t2T). In this case
we can define the delay time of car motion asT.

Let the position of the leader at timet be y(t) and that of
its follower x(t), which obeys Eq.~1.5!, that is,

ẍ~ t1t!5a$V„y~ t !2x~ t !…2 ẋ~ t !%. ~3.1!

Starting from the situation with headwayb and velocity
V(b),

y0~ t !5V~b!t1b, x0~ t !5V~b!t, ~3.2!

we investigate the response of the followerj(t) to a small
changel(t) of the leader:

y~ t !5y0~ t !1l~ t !, x~ t !5x0~ t !1j~ t !. ~3.3!

Inserting the above equations into Eq.~3.1! and taking a
linear approximation, we get

j̈~ t1t!1aj̇~ t !1a fj~ t !5a fl~ t !, ~3.4!

wheref 5V8(b) is again a derivative of the OVF at headwa
b. If one takesl(t)5eivt, the solution is given by

e

FIG. 4. Critical curves in the polar coordinate (f /a,a) plane.
The solid line and dashed line show critical curves forat50.6 and
at50.8, respectively. A circle of diamond marks represents mo
solutions forf /a50.75.
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5432 PRE 58BANDO, HASEBE, NAKANISHI, AND NAKAYAMA
j~ t !5
1

11 iv/ f 2eivtv2/a f
eivt. ~3.5!

This is rewritten as

j~ t !5ujueiv~ t2T!, ~3.6!

where

T5
1

v
tan21

av2v2sin~vt!

a f2v2cos~vt!
, ~3.7!

uju5F11S v

f D 2

22S v2

a f DnS cosvt1
v

f
sinvt D

1S v2

a f D
2G2 ~1/2!

. ~3.8!

First let us consider the caseuvu is sufficiently small (v/ f
!1,v/a!1). It will be discussed later whether this cond
tion is satisfied or not in the realistic situation used in E
~1.6!. Then we have

uju51, T5
1

f
. ~3.9!

Here we take the general expression ofl(t), which is
expressed as follows:

l~ t !5E l̃~v!eivtdv. ~3.10!

l̃(v) is assumed to be nonzero only forv small enough.
Then we find that the follower’s response becomes

j~ t !5E l̃~v!eiv~ t2T!dv5l~ t2T!, ~3.11!

that is,

ẋ~ t !5V~b!1 j̇~ t !5V~b!1l̇~ t2T!5 ẏ~ t2T!,
~3.12!

with T of Eq. ~3.9!.
As a result we conclude that for sufficiently slow an

small change of leader’s velocity, the delay timeT of motion
of the follower becomes 1/f ~the inverse of derivative of the
OVF at corresponding headway!, independently of the ex
plicit delay timet of the driver’s response.

B. Simulations for homogeneous flows

Next we will carry out numerical simulations to invest
gate the effect of the explicit delay in homogeneous tra
flows. The validity of the conditionsv!a, f can be checked
also. We make simulations starting from homogeneous flo
with various headways and add a small disturbance to a
In order to set the homogeneous flow condition, the circ
length L is taken to beN3 ~headway!. In this simulation
also, we takeN5100 for convenience. We suppose the d
turbed car to be the first car. Therefore the 100th car p
.

c

s
ar.
it

-
e-

cedes the first car. The delay time of car motion is estima
between the 10th car and 11th car when the disturba
propagates there.

In Table I, we summarize the results of numerical sim
lation. In the cases where the homogeneous flow is sta
the delay timeT of car motion is almost equal to 1/f and the
explicit delay has no effect. The casesDx520,25,30 corre-
spond to the unstable situation. The measurement of the
lay time T is carried out before the disturbance becom
large. The results show that the assumptionv!a, f is not
valid. Even in such cases the explicit delay does not affecT.

C. Simulation for congested flows

In this subsection, we treat the car motion in a station
congested flow, where linear analysis is no more valid ob
ously. In the previous paper@4# we have shown that the
delay timeT of car motion is the inverse of the gradient
lines that connect two turning points (C and F in Fig. 2!.
This is a natural extension of the statement obtained by
linear analysis: ‘‘The delay time of car motion is the inver
of derivative of the OVF at corresponding headway.’’

Our task here is to carry out similar numerical simulatio
with the explicit delay. After the congestion pattern becom
stable, all cars behave in the same manner expressed in
3. We can estimate the delay timeT from the time interval of
the motion of two successive cars, which is equivalent to
gradient of line connecting two turning points of the hyste
esis loop. Table II shows the results of simulations fort
50, 0.1, 0.2.

The table clearly shows that the change ofT is rather
small compared to the change oft. Therefore the main con
tribution of the delay of car motion comes from the structu
of OVM itself and not from the explicit delay. Thet depen-
dence ofT appears only through the change of turning poi
of the hysteresis loop. In other words, the effect of the
plicit delay is similar to the change of the sensitivitya and is
not essential in the same as the previous section.

TABLE I. Delay times of car motions in homogeneous flows.

Dx ~m! f 21 ~s! Tt50 ~s! Tt50.1 ~s! Tt50.2 ~s!

10 2.6427 2.6 2.6 2.6
15 1.3434 1.35 1.35 1.35
20 0.8282 0.95 0.95 0.95
25 0.6921 0.85 0.87 0.89
30 0.8282 0.95 0.95 0.95
35 1.3434 1.35 1.35 1.35
40 2.6427 2.6 2.6 2.6
50 13.101 13 13 13

TABLE II. Delay times of car motions in congested flows.

t T simulation

0.0 0.94
0.1 0.96
0.2 0.99
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D. Simulations for car motion under a traffic signal

In this subsection we study the delay of motion of ca
starting from a traffic signal. Though this may be a spec
case compared to previous subsections, experiments to
serve the delay time have often been done in this situati

Numerical simulations are carried out as follows. Firs
traffic signal is red and all cars are waiting with a headway
7 m, at which the OVF~1.6! becomes zero. At timet50, the
signal changes to green and cars start.

Figures 5 and 6 show the velocities of several cars i
queue for the cases oft50 andt50.2 sec, respectively. I
can be seen that cars with large car number~seventh or
more! behave almost in the same manner as its prece
car.

We can estimate the delay timeT from the behavior of the
velocities of the 7th–10th cars. Table III shows the de
time of car motion for varioust. Again we find that the
delay timeT has a small dependence on the explicit de
time t. To see whether this is general or not, we carried
another simulation with the initial headway, 3 m. For th
purpose, the OVF@Eq. ~1.6!# is changed to take zero fo
Dx,7 m. We show the results in the third column of Tab

FIG. 5. Motions of cars 1–11 fort50. Each curve shows the
velocity of each car.

FIG. 6. Motions of cars 1–11 fort50.2. Each curve shows th
velocity of each car.
s
l
b-
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III, which again show obviously a small dependence ofT
on t.

Hitherto we concerned the definition of delay time of c
motion given in Sec. I: if velocities of two successive ca
are given byv(t) andv(t2T) respectively, the delay time o
car motion isT. This definition is valid only for the case tha
the motions of two cars are similar. As is seen from Figs
and 6, the first several cars move in the different mann
because the headway of the first car is infinite but that
other cars are relatively small. In order to explore the de
time of car motion in such a case we will propose anot
definition. For example, we can define the delay time as
interval between the time when the preceding car starts
the time when the next car starts. Though there are m
other possibilities, the above definition looks rather natur

Figure 7 shows the delay time of car motion by the n
definition. Obviously the data approach to a certain value
the car number becomes large. The limits of the delay tim
in this definition are the same values as those in the prev
definition. It should be mentioned that the explicit delay tim
t is simply added to the delay timeT of car motion for first
a few cars. This effect dissipates after several cars start.

From these results, we can conclude that the explicit de
time t contributes directly to the delay time of car motio
only for such a restricted case as for the motion of first a f
cars starting from the traffic signal. In general case, the c
tribution of t to T is rather small and is similar to the con
tribution from the change of the sensitivitya.

IV. NEW FEATURES OF OVM WITH EXPLICIT DELAY

In this section we show new features which exist only
the OVM with the explicit delay.

TABLE III. Delay times of car motions in queues starting fro
a traffic signal.

t ~s! T for a 7-m headway~s! T for a 3-m headway~s!

0.0 1.10 1.26
0.1 1.10 1.26
0.2 1.11 1.25
0.3 1.12 1.26

FIG. 7. Solid line connects delay times~time intervals! of 2nd–
11th cars fort50. Dashed, dotted, and dashed-dotted lines conn
those fort50.1, 0.2, and 0.3, respectively.
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A. Overshoot phenomenon

We investigated the motion of cars controlled by a traf
signal in the previous section. For smallt the motions of
cars are not so different from those fort50. For larget,
however, we can see a transitional overshoot of velocity,
is, an excess and a gradual decrease of velocity. As a typ
case, the motions of cars fort50.3 are shown in Fig. 8. We
have carried out many numerical simulations by changint
and found that the overshoot phenomenon begins at
50.19 sec.

B. Upper bound of t

First we note that the explicit delay timet is understood
as the summarized effect coming from delays of physical
mechanical response. Therefore a too large value will no
permitted from observations. There exists, however, m
restrictive bound, which has an origin in the equation
motion ~1.1! of the OVM.

We consider a homogeneous equation of the lineari
equation~3.4! in the leader-follower system:

j̈~ t1t!1aj̇~ t !1a fj~ t !50. ~4.1!

j(t) gives a perturbative motion of the follower when th
leader moves in a constant velocity. In order that the t
body system is stable,j(t) must vanish as time develops. W
see thatj(t)5eivt is a solution of Eq.~4.1!, with v satisfy-
ing

2v2eivt1 iav1a f50. ~4.2!

The marginally stable condition Imv 5 0 becomes

at5k sin~k!, f t5k cot~k!, ~4.3!

wherek[Revt. By eliminatingk, we can find the uppe
bound oft for givena and f . Though we could not solve Eq
~4.3! analytically, the upper boundtm is found to be a mono-
tonic decreasing function of botha and f .

The value oftm can be evaluated numerically. For th
sensitivity a52.0 sec21 and the maximum value off
51.441 sec21, which is read off from the OVF@Eq. ~1.6!#,
the corresponding upper boundtm is 0.44 sec. Ift.tm sec

FIG. 8. Motions of cars 1–11 fort50.3. Each curve shows th
velocity of each car.
at
al

d
e

re
f

d

o

in the OVM with abovea and f , the car cannot follow the
constant velocity motion of the leader. Thustm should be
understood as the upper bound of the explicit delay time
order that the OVM is meaningful as a model of traffic flow

C. New congestion pattern

Inside the above upper bound of the explicit delay tim
some curious phenomena emerge in traffic flow as the
plicit delay time becomes large. If such phenomena sho
be regarded as unrealistic, the upper bound will be taken
smaller value.

Figure 9 shows a snapshot of headway att510 000 sec,
which is enough simulation time to settle congestion p
terns. The conditions of the simulation are as follows: to
car numberN5100, circuit lengthL52500 m and explicit
delay timet50.22 sec. There we can see small congest
clusters or rapid change of velocity between the 15th a
60th cars. This pattern looks like an intermediate pattern
fore the congestion is formed completely. However, in co
trast to the case oft50.20 sec, where such a pattern of sm
congestions disappears as time goes, the pattern has
long life and may never disappear in the case oft50.22 sec.
This pattern occupies a larger region ast increases.

Next we taket to be a larger value 0.4 sec. Figure 1
shows the hysteresis loops fort50 at approximatelyt
;1000 sec and 0.4 at approximatelyt;106 sec. Here we
note that the OVF@Eq. ~1.6!# takes negative value continu
ously for Dx,7 m and therefore cars can move backwa
~without collisions!. Because such behaviors of vehicles a
obviously unrealistic, it seems natural to set the upper bo
of t to the transition point at which this hysteresis loop a
pears.

As shown in Fig. 10, the profiles of hysteresis loops a
qualitatively different. Moreover, the hysteresis loop fora
52.8 is larger than that fora52.0 in the case oft50.4 in
contrast to the case oft50. We also note that the relaxatio
time for t50.4 is of the order of 103– 104 times that fort
,0.2. The differences of hysteresis loops and relaxat
times seem to suggest an existence of a new phase. How
there exists another possibility: the stationary state indica
by this hysteresis loop is artificial due to finite size effec
and a new phase does not exist. The congestion pa
changes continuously aroundt;0.22 sec and we cannot fin

FIG. 9. A snapshot of velocities att510 000 sec. Diamond
marks represent the velocities of the cars.
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a definite transition point. It is left to future work to dete
mine whether this pattern indicates the existence of n
phase or not.

V. SUMMARY AND DISCUSSION

In this paper we investigated the properties of the OV
with the explicit delay of the driver’s response. The effe
of the explicit delay are very small, if the delay time is sma
t,0.2 sec. The effects are similar to the change~reduction!
of the sensitivitya, and therefore the explicit delay does n
play an essential role. This fact should be compared to
traditional car-following models, in which the delay of driv
er’s response has played a significant role. The equatio

FIG. 10. Hysteresis loops fort50 andt50.4. As a reference
two cases,a52.0 anda52.8, are shown. A tanh-type curve repr
sents the OVF@Eq. ~1.6!#.
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motion of the traditional car-following model become
trivial, if the delay time is zero.

For large explicit delay timet, the traffic flow behaves in
a different manner. Ift,0.2 sec, the properties of conge
tion clusters are similar to that fort50. Fort.0.2 sec, the
stationary pattern of the traffic flow does not consist of on
such congestion clusters but confused patterns. Fort.0.3
sec, the traffic flow becomes stationary but congestion c
ters are never formed.

In the OVM, there is an upper bound of the explicit del
time, which comes from the condition that the equation
motion is meaningful. The upper bound, however, becom
small, if we require the existence of stable congestion cl
ters.

From this work, we can obtain an indication on a ph
nomenological study. In this paper we clarified the notions
the delay timet of driver’s response and the delay timeT of
car motion. However, the meaning of the delay time of
sponse and its effect are model dependent. In traditional
following models, the delay timet seems to be merely a
fitting parameter and so we can take any value fort. More-
over, the delay time often takes different value in each te
In the OVM, the delay timet is not free and the observe
value decided by experiments will give a criterion wheth
the OVM with the optimal velocity function~1.6! is valid or
not. Here we note that the contribution of the delay of dr
er’s response to the delay of car motion is very small. T
delay of car motion, therefore, has its root just in the dyna
cal equation itself. This fact suggests the difficulty in det
mining the delay timet of driver’s response by measurin
the delay timeT of car motion. Thereforet must be mea-
sured directly by other experiments.
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